Homework \#10 (10 points) - Show all work on the following problems:

Problem 1 (2 points): In a laboratory experiment, a muon travels 800 meters before decaying. The lifetime of a muon at rest is $2 \times 10^{-6} \mathrm{~s}$. What was the speed of the muon relative to the laboratory, expressed as a fraction of the speed of light?

Problem 2 (2 points): A boat has a mast that is tipped backward from vertical, making an angle of θ with respect to the horizontal deck. If the boat travels at speed v past a dock, what angle between the mast and the deck does a stationary observer on the dock report?

Problem 3 (2 points): Solve the Lorentz transformations for $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$ in terms of x, y, t, z (Eq. 12.18) to obtain the reverse transformation for x, y, t, z in terms of $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$ (Eq. 12.19).

Problem 4 (2 points): Find the Lorentz velocity transformation for velocities in the y and z direction (perpendicular to the relative velocity v).

Problem 5 (2 points): Consider two events: Event A taking place at (x, y, z) $=(5,3,0)$ at time $t=15 / c$, and Event B taking place at $(x, y, z)=(10,8,0)$ at time $t=5 / c$, both in reference frame S.

2a (0.5 points): What is the invariant interval between Events A and B?
$\mathbf{2 b}$ ($\mathbf{0 . 5}$ points): Is there an inertial system S^{\prime} in which they are simultaneous? If so, what is its velocity relative to S ?

2c (1 point): Is there an inertial system S^{\prime} in which they take place at the same point? If so, what is its velocity relative to S ?

